The Fine Structure Constant

tfsc_blog_header

View on ResearchGate.net

The fine structure constant, alpha (α), has a value of 1/137…. It first appeared as the velocity in speed of light units of the orbiting electron in its lowest energy state in a hydrogen atom. The analysis of the orbital velocity gives the equation

tfsc_equation_1

where e is the charge of the electron ħ is Planck’s constant, and c is the speed of light.

The fine structure constant is the ratio of electromagnetic forces to nuclear forces. Furthermore, alpha appears throughout quantum electrodynamic (QED) theory. QED physicists use the constant throughout their analyses of the interactions of electron and photons. However, they have not the least idea of its origin. Many physicists reading a book, when they come to page 137, will pause and wonder what the origin of α is.

During the years 1967 to 1970, the McDonnell Douglas Company funded the Advanced Propulsion Research Group to develop a new physical theory which, hopefully, would lead to extremely advanced propulsion. The group consisted of Joseph M. Brown (PhD Purdue – Mechanical Engineering), Darell B. Harmon, Jr. (PhD UCLA – Physics), Leon A. Steinert (PhD Colorado – Physics), and Robert M. Wood (PhD Cornell – Physics).

The research centered on developing a theory of physics based on an absolute space – separate absolute time universe filled with an ether of extremely small, smooth, elastic spheres. We dubbed this the kinetic particle theory of physics. Two parameters characterizing such a gas are the particle mean speed vm and the particle RMS speed vr. Toward the end of the research effort, we discovered the relation

tfsc_equation_2

The value 1/137….. results since vr/vm =√(3π/8). This expression, modified by the orbital analysis of the atom using the atom center of mass system, gave the factor 1/137……. This quantity agreed with the value of the fine structure constant within one part in 70,000, see the paper by Brown, Harmon, and Wood [1].

Based upon the precise agreement of this arrangement of the kinetic particle gas parameters and the fine structure constant, our group felt greatly encouraged that the kinetic particle theory of physics should be developed.

We assumed that nuclear particles consisted of condensations of the ether gas and that a condensation would act like a (fluid mechanic) doublet. Further, matter had to consist of mass orbiting at the speed of light. This was required to give matter energy as E=mc2. The computation of the interaction of one nucleon with another consisted of the analysis of two doublets. From this it was deduced that the strength of the strong nuclear force was proportional to the square of the mean velocity and, of course, proportional to the ether mass density. Thus, nuclear forces are proportional to ρvm2. This analysis was reported by Brown and Harmon in reference [2].

We soon concluded that these condensations moving at the speed of light in a circle making matter had been neutrinos translating in a straight line (at the speed of light, of course). For a condensation to be stable, it had to suck in gas particles, align them, and then expel them in two extremely fine streams. This required a pumping mechanism and streams that were so fine that this outflow would not interfere with the inflow. This fine stream requirement necessitated an extremely large mean free path to particle diameter ℓ/d ratio. The ℓ/d for the ether gas is 1018, see page 51 of [3].

It was noted that when particles were taken from a Maxwell-Boltzmann gas, aligned to be parallel and directed with the same sense, then squeezed together so that they formed a solid stream without changing their energy, then the translational velocity will jump from vm to vr, an 8.5% increase in velocity. The neutrino does what is specified above. This means that the neutrino will translate at the velocity vr-vm. Therefore, the speed of light is c=vr-vm. This discovery was reported in reference [4] and [5].

Knowing that the speed of light is vr-vm, we know that electromagnetic forces are the background density ρ times (vr-vm)2. With this information and that the strong nuclear force is proportional to ρvm2 we now know that

tfsc_equation_3

is the ratio of the electromagnetic force to the strong nuclear force.

The neutrino has two fine streams of ether particles exiting in opposite directions from the spherical neutrino. The stream directed forward is a solid stream translating at the velocity vr. The stream directed aft is at the velocity vm. When a neutrino is in a circular orbit, being a nuclear particle, such as the proton, then it produces a spherical wave with a velocity amplitude vr followed by a velocity amplitude vm. Thus, one of the primary characteristics of the electrostatic field is wave spaces with dimensions of 10-16m (the orbital radius of the proton, see page 600 of [3]). The waves advance spherically symmetric from the proton at the velocity vr-vm, or c.

The interactions of photons and electrostatic charge are dominated by these wave spaces. A photon consists of a string of the ether gas particles strung out uniformly over a harmonic wave. For high energy photons each wave space has many particles and for very low energy photons many wave spaces along the harmonic curve may have no particles. The wave spaces always travel radially from the charged particle at the speed of light. Thus, the speed of light is always the same, which is vr-vm. The wave space encapsulate the photon particles making up the photon.

From the above discussion and analyses it is clear that we know much about the fundamental mechanism of the fine structure constant. However, we still do not know why the electron in its lowest state in the hydrogen atom has the velocity [(vr-vm)/vm]2.

References
1. Brown, J.M., Harmon Jr., D.B., and Wood, R.M., “A Note on the Fine Structure Constant,” McDonnell Douglas Astronautics Company Paper MDAC WD 1372 Huntington Beach, CA, June 1970.
2. Brown, J.M., Harmon, Jr. D.B., “A Kinetic Par- ticle Theory of Physics”, J. Mississippi Academy of Sciences, VXVIII, Pages 1-26, 1972. Avail- able from Basic Research Press.
3. Brown, J.M., The Mechanical Theory of Everything, ISBN: 978-0-9712944-9-3, Basic Research Press, Starkville, MS, 2015.
4. Brown, J.M., “A Counter Example to the Second Law of Thermodynamics”, Abstract p.98, Jour- nal of the Mississippi Academy of Sciences, Vol. XXVI Supplement, 1981. Available from Basic Research Press.
5. Brown, J.M., “Force Production from Interacting Gas Flows for BMD Applications”, Final Report on U. S. Army Contract DAS6-80-C-0034 Administered by U. S. Army Ballistic Missile Defense Agency, Box 1500, Huntsville, Al. 35807, October 1, 1981.

View on ResearchGate.net

 
 
 
 

Structure of the Photon

The gross characteristics of the photon were discovered in 2011 and reported by the author in reference [1].  The theory of the photon is based upon the postulates that identical, small, spherical, elastic particles moving at an average speed over ten times the speed of light make up a gaseous ether which pervades the universe.  All neutrinos, matter, photons—everything—is made of these tiny elastic particles, which we call brutinos.  The photon is a string of brutinos uniformly distributed along a complete sine wave.  The brutinos move slowly compared to the average speed of the background particles.  Their speed, of course, is the speed of light, c, and their total mass times the square of their speed is the energy they transport.  The particles making the sine wave do not undulate as the photon travels; the photon travels like a wire bent in the shape of a sine wave.

Since the publication of [1] we have made additional discoveries about the photon structure.  The brutinos are encapsulated in a string of spheroidal wavespaces which have linear dimensions of 10-16 m.  These wavespaces are links making up a sinuoidal chain the length of the photon.  Also, we have additional insight into the mechanism by which the photon increases the orbital path of an electron in an atom.


[1] President of Basic Research Press and Retired Professor of Mechanical Engineering at Mississippi State University.  Paper prepared June, 2015.

Read the full paper on the Structure of the Photon here.

 
 

Action at a Distance

AIAD 1The earth attracts the moon. What is the mechanism of gravity? A proton attracts an electron and a proton repels a proton. What produces these forces between matter? Clearly there must be a medium between pieces of matter in order to produce the forces. Then how in the world is it possible to develop forces of repulsion and, presumably the more difficult problem, of developing forces of attraction?

Let us begin with a simple experiment. Below we show a large tank of water and two elastic (rubber-like) balls which can be inflated and deflated cyclically, see the figure. Two spheres are shown which are connected to pipes. Continue reading Action at a Distance

 
 

A Possible Cause of Cancer and Aging

Abstract

The cause of aging as well as the cause of cancer may be due to torsional strain induced in DNA at each division cycle.  If this theory is correct, the DNA is separated by pulling apart and twisting each strand of DNA.  While the strand is held apart, a new strand is constructed.  Then, as the DNA building machinery leaves, the new strands are torqued and the original strands have the torque partly released.  Each subsequent cell division results in another increment of torsional strain.  Eventually the strain becomes large enough so that transcription fidelity is hampered or even stopped and the cell is degraded or dies.  Aging of the organism would be manifested by the appearance and performance of the cell.  Continue reading A Possible Cause of Cancer and Aging

 
 

The Beginnings of the Universe

In this post I discuss what we may infer about the beginnings of the universe.

Using the kinetic particle theory of the universe we begin with a three dimensional space which contains a gas of small (10-35 m diameter, 10-66 kg mass) particles which are smooth and perfectly elastic.  They have an average speed ten times the speed of light.  Due to the random velocities of these particles winds are formed and occasional permanent tornado-like assemblies are produced which live forever.  These assemblies are condensations of the background gas, they move at a tenth the average speed of the background gas (and thus, they translate at the speed of light), and occur in an extended range of masses.  These assemblages are neutrinos.  On rare occasions a neutrino with the mass of a proton will collide with other neutrinos and end up taking a circular path.  Such an event of a neutrino with the mass of a proton taking a circular path produces a proton. Continue reading The Beginnings of the Universe